怎么证明葛立恒数

可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

展开全部葛立恒数是拉姆齐理论(Ramsey theory)中一个极其异乎寻常问题的上限解,是一个难以想象的巨型数。这个问题表述为:

连接n维超立方体的每对几何顶点,获得一个有着2^n个顶点的完全图(每对顶点之间都恰连有一条边的简单图)。将该图每条边的颜色填上红色或蓝色。那么,使所有填法在四个共面顶点上包含至少一个单色完全子图的最小n值为多少?[1]

葛立恒数无比巨大,无法用科学记数法表示,就连a^(b^(c^(…)))这样的指数塔形式也无济于事,葛立恒数如何证明甚至连数学家都难以理解它。

举个例子,如果把宇宙中所有已知的物质转换成墨水,并把它放在一支钢笔中,那也没有足够的墨水在纸上写下所有这个数的位数。

事实上,这只钢笔甚至无法写出这个数的位数的位数。就是在添加多少个“的位数”也无济于事。

事实上,我们甚至无法写出在后面要添加多少个“的位数”才能被这只钢笔写出来。

虽然这个数太大了而无法完全计算出,但葛立恒数的最后几位数可以通过简单的算法导出。其最后12位数是7。

更多精彩尽在这里,详情点击:https://matahariterbitbali.com/,巴列卡诺

发表评论

电子邮件地址不会被公开。 必填项已用*标注